How do you solve z^4+z^2+1 = 0 ?
2 Answers
Explanation:
Explanation:
Given:
z^4+z^2+1 = 0
We can complete the square to find:
0 = z^4+z^2+1
color(white)(0) = (z^2+1)^2-z^2
color(white)(0) = ((z^2+1)-z)((z^2+1)+z)
color(white)(0) = (z^2-z+1)(z^2+z+1)
Then we can find the zeros of the quadratics by completing the square again:
0 = 4(z^2-z+1)
color(white)(0) = 4z^2-4z+1+3
color(white)(0) = (2z-1)^2-(sqrt(3)i)^2
color(white)(0) = ((2z-1)-sqrt(3)i)((2z-1)+sqrt(3)i)
color(white)(0) = (2z-1-sqrt(3)i)(2z-1+sqrt(3)i)
Hence:
z = 1/2+-sqrt(3)/2i
Similarly:
0 = 4(z^2+z+1) = (2z+1-sqrt(3)i)(2z+1+sqrt(3)i)
Hence:
z = -1/2+-sqrt(3)/2i
Alternatively, note that:
(z^2-1)(z^4+z^2+1) = z^6-1
Hence the zeros of