How can i find the Domain of this f(x)?

#f_x=(sinx/(x^3+x-2))-(ln(x+1)/x)#

1 Answer
Jan 25, 2018

#D_f=(-1,0)uu(0,1)uu(1,+oo)#

Explanation:

For #f# to be defined in #RR# you need

  • #x^3+x-2!=0#

  • #x+1>0#

  • #x!=0#

With Horner method to factor #x^3+x-2# you get

#x^3+x-2= (x-1)(x^2+x+2)#

But #x^2+x+2# is always #>0# because the discriminant #Δ<0#
#Δ=b^2-4ac=1-4*2*1=1-8=-7<0#

As a result you need #x-1!=0 <=> x!=1#

So you need

  • #x!=1#
  • #x>##-1#

  • #x!=0#

Therefore the domain of #f# will be

#D_f=(-1,0)uu(0,1)uu(1,+oo)#