The binomial theorem states, (x+a)n=n∑k=0(n!k!(n−k)!)xn-kak
Here, n=5,x=2x,a=−3
(2x−3)5=5∑k=0(5!k!(5−k)!)(2x)5-k(−3)k
When k=0,
(5!0!(5−0)!)(2x)5-0(−3)0
(1201⋅120)⋅32x5⋅1
=32x5
When k=1,
(5!1!(5−1)!)(2x)5-1(−3)1
1201⋅24⋅16x4⋅(−3)
=−240x4
When k=2,
(5!2!(5−2)!)(2x)5-2(−3)2
1202⋅6⋅8x3⋅9
=720x3
When k=3,
(5!3!(5−3)!)(2x)5-3(−3)3
1206⋅2⋅4x2⋅(−27)
=−1080x2
When k=4,
(5!4!(5−4)!)(2x)5-4(−3)4
12024⋅1⋅2x⋅81
=810x
When k=5,
(5!5!(5−5)!)(2x)5-5(−3)5
120120⋅1⋅1⋅(−243)
=−243
Add each individual answer up. The answer is 32x5−240x4+720x3−1080x2+810x−243.