How do you expand (2x3)5 using Pascal’s Triangle?

1 Answer
Jan 26, 2018

32x5240x4+720x31080x2+810x243

Explanation:

The binomial theorem states, (x+a)n=nk=0(n!k!(nk)!)xn-kak

Here, n=5,x=2x,a=3

(2x3)5=5k=0(5!k!(5k)!)(2x)5-k(3)k

When k=0,

(5!0!(50)!)(2x)5-0(3)0

(1201120)32x51

=32x5

When k=1,

(5!1!(51)!)(2x)5-1(3)1

12012416x4(3)

=240x4

When k=2,

(5!2!(52)!)(2x)5-2(3)2

120268x39

=720x3

When k=3,

(5!3!(53)!)(2x)5-3(3)3

120624x2(27)

=1080x2

When k=4,

(5!4!(54)!)(2x)5-4(3)4

1202412x81

=810x

When k=5,

(5!5!(55)!)(2x)5-5(3)5

12012011(243)

=243

Add each individual answer up. The answer is 32x5240x4+720x31080x2+810x243.