How do I find the nth row of Pascal's triangle?

1 Answer
Jul 15, 2015

The nth row of Pascal's triangle is:

((n-1),(0)) ((n-1),(1)) ((n-1),(2))... ((n-1), (n-1))

That is:

((n-1)!)/(0!(n-1)!) ((n-1)!)/(1!(n-2)!) ... ((n-1)!)/((n-1)!0!)

Explanation:

It's generally nicer to deal with the (n+1)th row, which is:

((n),(0)) ((n),(1)) ((n),(2)) ... ((n),(n))

or if you prefer:

(n!)/(0!n!) (n!)/(1!(n-1)!) (n!)/(2!(n-2)!) ... (n!)/(n!0!)