Question #fec67

1 Answer
Jan 26, 2018

This is Linear Differential Equation.
#xy= ln(c/y)#

Explanation:

Instead of #dy/dx# we form #dx/dy# because of linear #x# in Numerator.

#y^2dx+(xy+1)dy=0#

Dividing by #dy#

#y^2dx/dy+(xy+1)=0#

Dividing by #y^2#

#dx/dy+(x/y+1/y^2)=0#

#dx/dy +x/y = -1/y^2#

Comparing with:
#dx/dy + P(y).x=Q(y)#

#P(y) = 1/y# and #Q(y) = -1/y^2#

Integrating Factor:
# e^(int 1/y dy) #

#e^lny#

i.e #y#

Now,
#x . IF = int IF . (-1/y^2) dy#

#x y = int y (-1/y^2) dy#

#x y = int -1/y dy#

#xy = -ln y + ln c#

#xy = ln(c/y)#