Question #cab31

1 Answer
Jan 26, 2018

#-cotx. lnx -1/x#

Explanation:

#y = ln (x^sinx) #
# y= sinx lnx#

Differentiating wrt to #cosx#:

Using product rule:

#dy/(d(cosx)) = (dsinx) /(d (cosx)). lnx + (dlnx)/(d(cosx)). sinx#

Differentiating #sinx# wrt to #cosx# is equivalent to differenting both wrt to #x#
i.e #((dsinx)/dx )/((dcosx)/dx)#

#dy/(d(cosx)) = cosx /-sinx. lnx + (1/x)/-sinx. sinx#

#dy/(d(cosx)) = -cotx. lnx - 1/x#