Question #27e2b
3 Answers
Explanation:
We need to calculate
We can't really do much because the denominator has two terms in it, but there is a trick we can use. If we multiply the top and bottom by the conjugate, we'll get an entirely real number on the bottom, which will let us calculate the fraction.
So, our answer is
The answer is
Explanation:
The complex numbers are
Multiply the numerator and denominator by the conjugate of the denominator
Explanation:
#z_1/z_2=(4-3i)/(1-2i)#
#"multiply numerator/denominator by the "color(blue)"complex conjugate"" of the denominator"#
#"the conjugate of "1-2i" is "1color(red)(+)2i#
#color(orange)"Reminder"color(white)(x)i^2=(sqrt(-1))^2=-1#
#rArr((4-3i)(1+2i))/((1-2i)(1+2i))#
#"expand factors using FOIL"#
#=(4+5i-6i^2)/(1-4i^2)#
#=(10+5i)/5=2+i#