Prove that (a) sin(x3π2)=cosx and (b) sin(θπ3)+cos(θπ6)=sinθ?

1 Answer

Verified the above relations below.

Explanation:

(a) LHS
= sin(x3π2)

= sinxcos(3π2)cosxsin(3π2)

As cos(3π2)=0 and sin(3π2)=1

Substituting we have

= sinx×0cosx×(1)

= 0+cosx

= cosx =RHS

(b) LHS=sin(θπ3)+cos(θπ6)

Expanding using addition formula

sin(AB)=sinAcosBcosAsinB and
cos(AB)=cosAcosB+sinAsinB

LHS
= sinθcos(π3)cosθsin(π3)+cosθcos(π6)+sinθsin(π6)

As cos(π6)=sin(π3)=32 and cos(π3)=sin(π6)=12

Therefore LHS=sinθ×12cosθ×32+cosθ×32+sinθ×12

= sinθ(12+12)

= sinθ

= RHS