How do you solve #x^ { 2} ( x ^ { 2} - 25) \geq 0#?
1 Answer
Explanation:
First, let's find the points where the function EQUALS
This is because whenever the function is
#x^2(x^2-25) = 0#
#x^2(x-5)(x+5) = 0#
#x = 0, 5, or -5#
This means that the function equals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Let's use
#(-6)^2((-6)^2 - 25)#
#36 (36 - 25)#
#396#
This is a positive number, so the interval
Let's use
#(-1)^2((-1)^2-25)#
#(1)(1-25)#
#-24#
This is a negative number, so the interval
Let's use
#(1)^2((1)^2-25)#
#1(1-25)#
#-24#
This is a negative number, so the interval
Let's use
#(6)^2((6)^2 - 25)#
#36(36 - 25)#
#396#
This is a positive number, so the interval
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Remember, we're looking for when the function is greater than or equal to zero. This means that our solution will include all of the ZEROES (-5, 0, and 5) as well as all of the positive intervals.
So our solution is:
#x = -5, " "x = 0, " "x = 5#
#x < -5, " " x > 5#
We can combine the equalities and inequalities for
#x le -5, " " x = 0, " " x ge 5#
Final Answer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
BONUS: Here's a graph of the function
graph{x^2(x^2 - 25) [-10, 10, -200, 200]}