Question #2533c

2 Answers
Feb 14, 2018

-11

Explanation:

This is based on the double angle formula for tanxtanx

tan(2x)=(2tanx)/(1-tan^2x)tan(2x)=2tanx1tan2x

x, in your problem, is (7pi)/87π8, so your problem is really looking for :

tan(2((7pi)/8))=(2tan((7pi)/8))/(1-tan^2((7pi)/8))tan(2(7π8))=2tan(7π8)1tan2(7π8)

tan(2((7pi)/8))=tan((14pi)/8)=tan((7pi)/4)tan(2(7π8))=tan(14π8)=tan(7π4)

tan((7pi)/4)=-1tan(7π4)=1

Feb 14, 2018

See the explanation

Explanation:

[2tan((7pi)/8)]/(1 - tan^2((7pi)/8)2tan(7π8)1tan2(7π8)

It is in the form of

(2tanx)/(1 - tan^2x)2tanx1tan2x

Which is an identity and is equal to tan2xtan2x.

So, [2tan((7pi)/8)]/(1 - tan^2((7pi)/8)2tan(7π8)1tan2(7π8)

= tan(2*(7pi)/8)=tan(27π8)

= tan((7pi)/4)=tan(7π4)

Now put pi = 180°

We get , tan(7*180/4)

= tan(7*45)

= tan (315°)

Now you can use the tables to find the value of tan (315°) which is equal to -1.