Question #445f7

2 Answers
Feb 14, 2018

#5x^2-10x-2=0#

Explanation:

If the equation is #ax^2+bx+c=0# then alpha+beta= b/a and alpha.beta=c/a.
Comparing #ax^2+bx+c=0, x^2+(-2)x+5=0# we get alpha+beta = -2 and alpha.beta=5.
Now, 1/alpha + 1/beta =(alpha+beta)/alpha.beta= -2/5.
Hence new equation is:
#x^2+(-2)x+(-2/5)=0#
Or,#5x^2-10x-2=0#

Feb 14, 2018

see a solution process below;

Explanation:

Let #A# and #B# be alpha and beta respectively..

#x^2-2x + 5 = x^2 -(A+B)x + AB#

#A + B = 2#

#AB = 5#

When #A + B# and #1/A+1/B# are the roots of the equation,

The expression becomes;

#x^2-(A+B+(1/A+1/B)x+[(A+B)(1/A+1/B)]#

Therefore;

#x^2-(A+B+((A+B)/(AB))x+[(A+B)((A+B)/(AB))]#

Substituting the values;

#x^2-(2+2/5)x+(2*2/5)#

#x^2-(12/5)x+4/5#

Multiply through by #5#

#5x^2 - 12x + 4#

Hope this helps!