Question #9ddf4

2 Answers
Feb 14, 2018

#int_1^5 x/sqrt(2x-1)\ dx=16/3#

Explanation:

I'm interpreting the question as:
#int_1^5 x/sqrt(2x-1)\ dx#

We begin by introducing a u-substitution, #u=sqrt(2x-1)#. We divide by the derivative and adjust the bounds to integrate with respect to #u#:
#(du)/dx=2/(2sqrt(2x-1))=1/u#

#x=5=>u=3#

#x=1=>u=1#
#int_1^5 x/sqrt(2x-1)\ dx=int_1^3x/cancelu*cancelu\ du#

We can't integrate #x# with respect to #u#, so we have to solve for #x# in terms of #u#:
#u=sqrt(2x-1)#

#u^2=2x-1#

#u^2+1=2x#

#(u^2+1)/2=x#

#int_1^3 (u^2+1)/2\ du=[1/2*u^3/3+1/2u]_1^3=3^3/6+3/2-(1/6+1/2)=#

#=27/6+9/6-1/6-3/6=32/6=16/3#

Feb 14, 2018

#int_1^5 x/sqrt(2x-1)*dx=16/3#

Explanation:

#int_1^5 x/sqrt(2x-1)*dx#

I used #u=sqrt(2x-1)#, #x=(u^2+1)/2# and #dx=u*du# transforms. According to it, #u=1# for #x=1# and #u=3# for #x=5#.

Hence,

#int_1^3 ((u^2+1)/2)/u*u*du#

=#1/2int_1^3 (u^2+1)*du#

=#[u^3/6+u/2]_1^3#

=#16/3#