# \ #
# "One way to do this is as below. The main tool used here is the" #
# "Subtraction Rule for Exponents." #
# "Here we go:" #
# { y^5 x^3 } / { y^5 x^3 } \ = \ y^5/y^5 \cdot x^3 / x^4 \ = \ y^{ 5 - 5 } \cdot x^{ 3 - 4 } \qquad \qquad \qquad \qquad \quad "Subtraction Rule" #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ y^{ 0 } \cdot x^{ -1 } #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \1 \cdot x^{ -1 } \qquad \qquad \qquad \quad "Zero Exponent Definition" #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = x^{ -1 } #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = 1 / x \quad. \qquad \quad \quad \ "Negative Exponent Definition" #
# "This is our answer." #
# \ #
# "Summarizing:" #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ { y^5 x^3 } / { y^5 x^4 } \ = \ x^{ -1 } \quad. #