How do you solve this integral?

x3(x24)32

1 Answer
Feb 16, 2018

I=17(x24)72+45(x24)52+C

Explanation:

We want to solve

I=x3(x24)32dx

Use substitution let u=x24dudx=2x

I=x3(u)3212xdu

=12x2(u)32du

But u=x24x2=u+4

I=12(u+4)(u)32du

=12u(u)32du+124(u)32du

=12u52du+2u32du

By the power rule for the integrals

I=17u72+45u52+C

Substitute u=x24 back

I=17(x24)72+45(x24)52+C