How do you solve this integral?

#intx^3(x^2-4)^(3/2)#

1 Answer
Feb 16, 2018

#I=1/7(x^2-4)^(7/2)+4/5(x^2-4)^(5/2)+C#

Explanation:

We want to solve

#I=intx^3(x^2-4)^(3/2)dx#

Use substitution let #u=x^2-4=>(du)/dx=2x#

#I=intx^3(u)^(3/2)1/(2x)du#

#=1/2intx^2(u)^(3/2)du#

But #u=x^2-4<=>x^2=u+4#

#I=1/2int(u+4)(u)^(3/2)du#

#=1/2intu(u)^(3/2)du+1/2int4(u)^(3/2)du#

#=1/2intu^(5/2)du+2intu^(3/2)du#

By the power rule for the integrals

#I=1/7u^(7/2)+4/5u^(5/2)+C#

Substitute #u=x^2-4# back

#I=1/7(x^2-4)^(7/2)+4/5(x^2-4)^(5/2)+C#