cos^2A-cos^2B=(cosA+cosB)(cosA-cosB)cos2A−cos2B=(cosA+cosB)(cosA−cosB)----------color(red)(1)1
Now,cosA-cosB=2sin(A+B)//2 xx sin(B-A)//2cosA−cosB=2sin(A+B)/2×sin(B−A)/2
Or, cosA-cosB=-2sin(A+B)//2 xx sin(A-B)//2cosA−cosB=−2sin(A+B)/2×sin(A−B)/2
Also,cosA+cosB=2cos(A+B)//2xxcos(A-B)//2cosA+cosB=2cos(A+B)/2×cos(A−B)/2
Plugging in the values in color(red)(1)1,and rearranging,we get,
{-2cos(A+B)//2xxsin(A+B)//2} xx {2sin(A-B)//2 xx cos(A-B)//2}{−2cos(A+B)/2×sin(A+B)/2}×{2sin(A−B)/2×cos(A−B)/2}
Thus,applying the formula sin2x=2sinxcosxsin2x=2sinxcosx,we have,
cos^2A-cos^2B=-sin(A+B)sin(A-B)cos2A−cos2B=−sin(A+B)sin(A−B)