# \ #
# "To answer this, we will look at" \ \ f'(x). #
# "Given:" \qquad \qquad \qquad \qquad \qquad \quad \ f(x) \ = \ x^3 - 6 x^2 + 16 x - 15. #
# "Differentiate:" \qquad \qquad \quad f'(x) \ = \ 3 x^2 - 12 x + 16. #
# "We want to know whether or not" \ f'(x) \ \ "is always positive." #
# "There are several ways to continue here. Because the function" #
# "is a quadratic polynomial with simple coefficients, it might be" #
# "easiest just to complete the square here:" #
# \qquad \qquad \qquad \qquad \qquad \qquad \quad f'(x) \ = \ 3 x^2 - 12 x + 16 #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ 3 ( x^2 - 4 x ) + 16 #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ 3 ( x^2 - 4 x + 4 - 4 ) + 16 #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ 3 ( ( x - 2 )^2 - 4 ) + 16 #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ 3 ( x - 2 )^2 - 12 + 16 #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ 3 ( x - 2 )^2 + 4. #
# "So:" #
# \qquad \qquad \qquad \qquad \qquad \qquad \quad f'(x) \ = \ 3 ( x - 2 )^2 + 4. #
# "The expression on the RHS of the previous is clearly positive" #
# "everywhere. Here's a proof, if desired:" #
# \qquad x \in RR \quad => \quad #
# ( x - 2 )^2 >= 0, "as square of any quantity is always non-negative;" #
# \qquad \qquad \qquad :. \qquad \qquad \quad \quad 3 \cdot ( x - 2 )^2 >= 3 \cdot 0, \qquad \qquad \qquad \quad "as 3 is positive;" #
# \qquad \qquad \qquad :. \qquad \qquad \qquad \quad \ 3 ( x - 2 )^2 >= 0, #
# \qquad \qquad \qquad :. \qquad \qquad \qquad \quad \ 3 ( x - 2 )^2 + 4 >= 0 + 4, #
# \qquad \qquad \qquad :. \qquad \qquad \qquad \quad \ 3 ( x - 2 )^2 + 4 >= 4, #
# \qquad \qquad \qquad :. \qquad \qquad \qquad \quad \ 3 ( x - 2 )^2 + 4 > 0. #
# "Thus:" #
# \qquad \qquad \qquad \qquad \qquad \qquad x \in RR \quad => \quad \ 3 ( x - 2 )^2 + 4 > 0. #
# \qquad :. \qquad \qquad \ 3 ( x - 2 )^2 + 4 \quad \ "is positive everywhere." #
# \qquad :. \qquad \qquad \qquad \qquad f'(x) \quad \ "is positive everywhere." #
# \qquad \qquad :. \qquad \qquad \quad f(x) \qquad \ "is increasing everywhere." #
# \ #
# "I.e.:" \qquad \qquad \qquad \qquad \quad f(x) \ \ "is increasing on" \ \ RR." \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \ square #