Integration of sec^2x/[(a/b)^2+tan^2x]?

1 Answer
Feb 18, 2018

#I=b/aarctan((btan(x))/a)+C#

Explanation:

We want to solve

#I=intsec^2(x)/((a/b)^2+tan^2(x))dx#

For simplicity substitute #d=a/b#

#I=intsec^2(x)/(d^2+tan^2(x))dx#

Make a substitution #u=tan(x)=>(du)/dx=sec^2(x)#

#I=int1/(d^2+u^2)du#

Factor out the #d^2#

#I=int1/(d^2((u/d)^2+1))du#

#=1/d^2int1/((u/d)^2+1)du#

Make a substitution #s=u/d=>(ds)/(du)=1/d#

#I=1/dint1/(s^2+1)ds#

#=1/darctan(s)+C#

Now we just need to substitute back

Remember #s=u/d, u=tan(x), d=a/b#

#I=1/darctan(s)+C#

#=1/darctan(u/d)+C#

#=1/darctan(tan(x)/d)+C#

#=1/(a/b)arctan(tan(x)/(a/b))+C#

#=b/aarctan((btan(x))/a)+C#