Prove that...?

#(1+2sinxcosx)/(sinx+cosx)=sinx+cosx#

1 Answer
Feb 21, 2018

# "Please see proof below." #

Explanation:

# "We are asked to prove:" #

# \qquad \qquad \qquad \qquad \qquad { 1+ 2 sinx cosx } / { sinx + cosx } \ = \ sinx + cosx. #

# "Looking at the LHS, we have the following:" #

# \qquad { 1+ 2 sinx cosx } / { sinx + cosx } \ = \ { ( sin^2x + cos^2x )+ 2 sinx cosx } / { sinx + cosx } #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ = \ { sin^2x + 2 sinx cosx + cos^2x } / { sinx + cosx } #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ = \ ( sinx + cosx )^2 / { sinx + cosx } #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ = \ sinx + cosx. #

# \qquad :. \qquad \qquad \qquad \qquad { 1+ 2 sinx cosx } / { sinx + cosx } \ = \ sinx + cosx. \qquad \qquad \qquad \qquad \ \ (!) #