The first step is to find the derivative of the given function and then put the value of #x=2# in the derivative function. The solve the equation for the variable left.
#f^{'}(x)\ =\ \frac{d}{dx}(a\ln (bx))#
#=a\frac{d}{dx}(\ln (bx))#
Apply the derivative rule #\frac{d}{du}(\ln (u))=\frac{1}{u}# to get:
#=a\cdot \frac{1}{bx}\cdot b#
Simplify:
#f^{'}(x)\ =\ \frac{a}{x}#
Put #f^{'}(x)=2# to get:
#f^{'}(2)\ =\ \frac{a}{2}#
Since, #f^{'}(2)\ =\ 2#, by putting here, we get:
#2=a/2#
Simplify:
#a=4#
Now, by putting #x=e# in the original function, we have:
#f(e)=4\cdot ln\(b\cdot e)#
To solve for #b# , put the value of #a# and #f(e)=2# to get:
#2=4\cdot ln\(b\cdot e)#
Apply the lograithm product rule to rewrite it as:
#ln(m\cdot n)\ =\ ln(m)+ln(n)#
#2=4[ln(b)+ln(e)]#
By manipulating the sides, you will have:
#\ln (b)=\frac{1}{2}-\ln (e)#
Put #ln(e)=1#
#\ln (b)=\frac{1}{2}-1#
Solve for #b# to get:
#b=\frac{1}{\sqrt{e}}#
That's it!