How do I solve for all real values of x in this equation 2 cos² x = 3 sin x ?

1 Answer
Feb 22, 2018

#x=pi/6+2kpi#
#x=(5pi)/6+2kpi#

Explanation:

#2cos^2x=3sinx#
#2*(1-sin^2x)=3sinx#
#2-2sin^2x=3sinx#
#2sin^2x+3sinx-2=0#

#sqrt(∆)=sqrt(25)=5#
#t_1=(-3-5)/4=-2#
#t_2=(-3+5)/4=1/2#

#sinx=1/2#

#x=pi/6+2kpi#
#x=(5pi)/6+2kpi#

k is real