How do I solve this... L'Hopitals seems to go in an loop?

lim x-> 0 of sin^3x/sinx^3 =?

2 Answers
Feb 23, 2018

1

Explanation:

Assuming the basic result

lim_(x->0) sinx/x = 1 (Textbook result) we have

(sin^3x)/(sin x^3) =( x^3/x^3)(sin^3x)/(sin x^3) = (sinx/x)^3(x^3/sin x^3)

then

lim_(x->0)(sin^3x)/(sin x^3)=lim_(x->0)(sinx/x)^3 lim_(x->0)(x^3/sin x^3) = 1 xx 1 = 1

Feb 23, 2018

I'm not pretty sure but i hope this helps...

Explanation:

lim_(x rarr0) (sin^3x)//sin x^3
Multiplying denominator with x^3,we have,
lim_(xrarr0)[{sin^3x}//x^3 ]xx1//{(sinx^3)//x^3}
thus (1)^3xx1=1