How do I solve f(x)=((5x^2)+(2x)+2)/(sqrt(x)) for f'(x)?
I'm still not understanding these power rules, and could definitely use some help. Thank you!
I'm still not understanding these power rules, and could definitely use some help. Thank you!
1 Answer
#f'(x)=(15x^(2)+2x-2)/(2x^(3/2))#
Explanation:
We want find the derivative of
#f(x)=(5x^2+2x+2)/sqrt(x)#
First rewrite so we easier can apply the power rule
#f(x)=(5x^2)/sqrt(x)+(2x)/sqrt(x)+2/sqrt(x)#
#f(x)=5x^(2-1/2)+2x^(1-1/2)+2x^(0-1/2)#
#f(x)=color(red)(5)x^(color(blue)(3/2))+color(red)(2)x^(color(blue)(1/2))+color(red)(2)x^(color(blue)(-1/2))#
Use the power rule if
then
Thus
#f'(x)=color(blue)(3/2)color(red)(5)x^(color(blue)(3/2)-1)+color(blue)(1/2)color(red)(2)x^(color(blue)(1/2)-1)+color(blue)((-1/2))color(red)(2)x^(color(blue)(-1/2-1))#
#color(green)(f'(x)=15/2x^(1/2)+x^(-1/2)-x^(-3/2))#
#f'(x)=(15x^(1/2))/2+1/(x^(1/2))-1/x^(3/2)#
#f'(x)=(15x^2)/(2x^(3/2))+x/(x^(3/2))-1/x^(3/2)#
#f'(x)=(15x^2)/(2x^(3/2))+(2x)/(2x^(3/2))-2/(2x^(3/2))#
#f'(x)=(15x^(2)+2x-2)/(2x^(3/2))#