We can solve this using circle theorem:
We know that #XA=XB=XC=5m# therefore the three sides are all radii of a circle with a radius of #5m#
Therefore, we know:
#2/_BCA=/_BXA#
#2/_ABC=/_AXC#
#2/_BAC=/_BXC#
#/_BXC=2(80)=160#
#/_AXC=2(60)=120#
#/_BXA=2(40)=80#
Using the cosine we know that:
#c^2=a^2+b^2-2bacosC#
#c=sqrt(a^2+b^2-2bacosC)#
#AB=sqrt(AX^2+XB^2-2(AX)(XB)cos(/_AXB))#
#color(white)(AB)=sqrt(5^2+5^2-2(5^2)cos(80))#
#color(white)(AB)~~6.43m#
#BC=sqrt(BX^2+XC^2-2(BX)(XC)cos(/_BXC))#
#color(white)(BC)=sqrt(5^2+5^2-2(5^2)cos(160))#
#color(white)(BC)~~9.89m#
#AC=sqrt(AX^2+XC^2-2(AX)(XC)cos(/_AXC))#
#color(white)(AC)=sqrt(5^2+5^2-2(5^2)cos(120))#
#color(white)(AC)~~8.66m#
Sides:
#AB~~6.43m#
#BC~~9.89m#
#AC~~8.66m#