How do i solve this?

enter image source here

2 Answers
Feb 25, 2018

As X is equidistant (5m) from three vertices of the triangle #ABC#,X is the circumcentre of #DeltaABC#

So #angleBXC=2*angleBAC#

Now

#BC^2=XB^2+XC^2-2XB*XC*cosangleBXC#

#=>BC^2=5^2+5^2-2*5^2*cos/_BXC#

#=>BC^2=2*5^2(1-cos(2*/_ BAC)#

#=>BC^2=2*5^2*2sin^2 /_BAC#

#=>BC=10sin/_BAC=10sin80^@=9.84m#

Similarly

#AB=10sin/_ACB=10sin40^@=6.42m#

And

#AC=10sin/_ABC=10*sin60^@=8.66m#

Feb 25, 2018

#AB~~6.43m#
#BC~~9.89m#
#AC~~8.66m#

Explanation:

We can solve this using circle theorem:
http://slideplayer.com/slide/3431320/

We know that #XA=XB=XC=5m# therefore the three sides are all radii of a circle with a radius of #5m#

Therefore, we know:
#2/_BCA=/_BXA#
#2/_ABC=/_AXC#
#2/_BAC=/_BXC#

#/_BXC=2(80)=160#
#/_AXC=2(60)=120#
#/_BXA=2(40)=80#

Using the cosine we know that:
#c^2=a^2+b^2-2bacosC#
#c=sqrt(a^2+b^2-2bacosC)#

#AB=sqrt(AX^2+XB^2-2(AX)(XB)cos(/_AXB))#
#color(white)(AB)=sqrt(5^2+5^2-2(5^2)cos(80))#
#color(white)(AB)~~6.43m#

#BC=sqrt(BX^2+XC^2-2(BX)(XC)cos(/_BXC))#
#color(white)(BC)=sqrt(5^2+5^2-2(5^2)cos(160))#
#color(white)(BC)~~9.89m#

#AC=sqrt(AX^2+XC^2-2(AX)(XC)cos(/_AXC))#
#color(white)(AC)=sqrt(5^2+5^2-2(5^2)cos(120))#
#color(white)(AC)~~8.66m#

Sides:
#AB~~6.43m#
#BC~~9.89m#
#AC~~8.66m#