Express 2+6i√3÷3 +i√3 in polar form?

1 Answer
Feb 25, 2018

#(10.583*(cos(79.10°)+i*sin(79.10°)))/(3.464*(cos(30°)+i*sin(30°)))#

Explanation:

First let's state the conversion between cartesian form and polar form

#z=a+bi#
#z = r*(cos(theta)+i*sin(theta))#
Where #r = sqrt(a^2+b^2)# and #theta = arctan(b/a)#

Let's break the equation into two smaller equations

The first: #z_1 = 2+i*6sqrt(3)#

#r_1 = sqrt(2^2+(6sqrt(3))^2) = 10.583#
#theta_1 = arctan((6sqrt(3))/2) = 79.10°#

And the second: #z_2 = 3 +i*sqrt(3)#

#r_2 = sqrt(3^2+sqrt(3)^2) = 3.464#
#theta_2 = arctan(sqrt(3)/3) = 30°#

Thus we can make the equation:

#(10.583*(cos(79.10°)+i*sin(79.10°)))/(3.464*(cos(30°)+i*sin(30°)))#