# "We are given the function:" #
# \qquad \qquad \qquad \qquad \qquad \qquad f(x) \ = \ { ( x - 5 ) ( x^2 - 2 x + 1 ) } / { ( x - 7 ) ( x^2 + 2 x + 3 ) } \quad. #
# "Before proceeding, let's rewrite the function a little, primarily" #
# "by some factoring:" #
# \qquad \qquad \qquad \qquad \qquad \qquad f(x) \ = \ { ( x - 5 ) ( x - 1 )^2 } / { ( x - 7 ) ( x^2 + 2 x + 1 + 2 ) } #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ { ( x - 5 ) ( x - 1 )^2 } / { ( x - 7 ) ( ( x + 1 )^2 + 2 ) } \quad. #
# "Thus:" #
# \qquad \qquad \qquad \qquad \qquad \qquad f(x) \ = \ { ( x - 5 ) ( x - 1 )^2 } / { ( x - 7 ) ( ( x + 1 )^2 + 2 ) } \quad. #
# "So, we may write, in terms that should be clear:" #
# \qquad \qquad \qquad \qquad \qquad \qquad f(x) \ = \ { ( x - 5 ) cdot "positive" } / { ( x - 7 ) ( "positive" + 2 ) } #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ = \ { ( x - 5 ) cdot "positive" } / { ( x - 7 ) cdot "positive" } \quad. #
# "Thus:" #
# \qquad \qquad \qquad \qquad \qquad \qquad f(x) \ = \ { ( x - 5 ) cdot "positive" } / { ( x - 7 ) cdot "positive" } \quad. #
# "Now suppose:" \quad 5 < a < 7. #
# "So clearly now:" #
# \qquad \qquad \qquad \qquad \qquad \qquad f(a) \ = \ { ( a - 5 ) cdot "positive" } / { ( a - 7 ) cdot "positive" } #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ = \ { "negative" \ cdot \ "positive" } / { "positive" \ cdot \ "positive" } #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ = \ { "negative" } / { "positive" } #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ = \ "negative" \quad. #
# "So we have shown:" #
# \qquad \qquad \qquad \qquad \qquad \quad 5 < a < 7 \quad => \quad f(a) \ = \ "negative" #
# \qquad "i.e.": \qquad f(a) \ = \ "positive" \quad => \quad 5 < a < 7 \quad \ "is impossible". #
# "And so, finally:" #
# \qquad \qquad \qquad { ( x - 5 ) ( x^2 - 2 x + 1 ) } / { ( x - 7 ) ( x^2 + 2 x + 3 ) } \quad "is positive" \quad => #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad 5 < x < 7 \quad \ "is impossible". \qquad \qquad \ \ square #