Why lim_(x->oo) (sqrt(4x^2+x-1)-sqrt(x^2-7x+3)) = lim_(x->oo) (3x^2+8x-4)/(2x+...+x+...)=oo?

1 Answer
Feb 28, 2018

"See explanation"

Explanation:

"Multiply by "

1 = (sqrt(4 x^2 + x - 1) + sqrt(x^2 - 7 x + 3))/(sqrt(4 x^2 + x - 1) + sqrt(x^2 - 7 x + 3))

"Then you get"

lim_{x->oo} (3 x^2 + 8 x - 4)/(sqrt(4 x^2 + x - 1) + sqrt(x^2 - 7 x + 3))

"(because "(a-b)(a+b) = a^2-b^2")"

=lim_{x->oo} (3 x^2 + 8 x - 4)/(sqrt(4 x^2 (1 + 1/(4x) - 1/(4x^2))) + sqrt(x^2(1 - 7/x + 3/x^2))

=lim{x->oo} (3 x^2 + 8 x - 4)/(2x sqrt(1 + 0 - 0) + x sqrt(1 - 0 + 0))

"(because "lim_{x->oo} 1/x = 0")"

=lim{x->oo} (3 x^2 + 8 x - 4)/(3 x)

=lim{x->oo} (x + (8/3) - (4/3)/x)

=oo + 8/3 - 0

=oo