Use the first principle to find the derivative of the function f(x)=20-:sqrt(x-1)20÷x1?

1 Answer
Feb 28, 2018

f'(x)=-10/((x-1)^(3/2))

Explanation:

The definition of a derivative (first principle)

f'(x)=lim_(h->0)(f(x+h)-f(x))/h

We want differentiate f(x)=20/sqrt(x-1), therefore we seek

f'(x)=lim_(h->0)20(1/sqrt(x+h-1)-1/sqrt(x-1))/h

Let's rewrite the numerator

NUM=1/sqrt(x+h-1)-1/sqrt(x-1)

=(sqrt(x-1)-sqrt(x+h-1))/(sqrt(x+h-1)sqrt(x-1))*(sqrt(x-1)+sqrt(x+h-1))/(sqrt(x-1)+sqrt(x+h-1))

=-h/(sqrt(x+h-1)sqrt(x-1)(sqrt(x-1)+sqrt(x+h-1))

Thus

f'(x)=lim_(h->0)20(-h/(sqrt(x+h-1)sqrt(x-1)(sqrt(x-1)+sqrt(x+h-1))))/h

=lim_(h->0)-(20)/(sqrt(x+h-1)sqrt(x-1)(sqrt(x-1)+sqrt(x+h-1)))

=-(20)/(sqrt(x-1)sqrt(x-1)(sqrt(x-1)+sqrt(x-1)))

=-(20)/(sqrt(x-1)sqrt(x-1)(2sqrt(x-1)))

=-20/(2(x-1)^(3/2))

=-10/((x-1)^(3/2))