If F(x)=the integration from 0 to x of square root of (t^3 + 1)dt then what is F'(2)?

1 Answer
Mar 2, 2018

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad F'(2) = 3. #

Explanation:

# "We are given:" #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ F(x) = int_0^x \ sqrt{ t^3 + 1 } \ dt. #

# "So, directly by a Fundamental Theorem of Calculus, we have" #
# "at once:" #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ F'(x) = sqrt{ x^3 + 1 }. #

# "Thus:" #

# \qquad \qquad \qquad \qquad \qquad \qquad F'(2) = sqrt{ 2^3 + 1 } = sqrt{ 9 } = 3. #

# "So:" #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad F'(2) = 3. #