Integrate? S10/√(2+√x)dx
1 Answer
Mar 2, 2018
Explanation:
I assume you mean, and the S is meant as an integral sign :)
I=int10/(sqrt(2+sqrt(x)))dxI=∫10√2+√xdx
Make a substitution
I=int10/(sqrt(u))2sqrt(x)dxI=∫10√u2√xdx
But
I=int10/(sqrt(u))2(u-2)dx=20intsqrt(u)-2/sqrt(u)duI=∫10√u2(u−2)dx=20∫√u−2√udu
Integrate
I=20(2/3u^(3/2)-4sqrt(u))+CI=20(23u32−4√u)+C
Substitute back
I=20(2/3(2+sqrt(x))^(3/2)-4sqrt(2+sqrt(x)))+CI=20(23(2+√x)32−4√2+√x)+C
I=40/3(2+sqrt(x))^(3/2)-80sqrt(2+sqrt(x))+CI=403(2+√x)32−80√2+√x+C