How do you use De Moivre's theorem to express (1 + i)^8?

1 Answer
Mar 3, 2018

z=16z=16

Explanation:

De Moivre's theorem states if color(orange)(z=r(cos(theta)+isin(theta)))z=r(cos(θ)+isin(θ)),

then color(orange)(z^n=r^n(cos(ntheta)+isin(ntheta)))zn=rn(cos(nθ)+isin(nθ))

First step convert from complex form to trig form

a+birarrr(cos(theta)+isin(theta))a+bir(cos(θ)+isin(θ))

By using

r=sqrt(a^2+b^2)r=a2+b2 and theta=arctan(b/a)θ=arctan(ba)

We have the number z=1+iz=1+i, thus

r=sqrt(1^2+1^2)=sqrt(2)r=12+12=2

theta=arctan(1/1)=pi/4θ=arctan(11)=π4

z=sqrt(2)(cos(pi/4)+isin(pi/4))larr"Trig form"z=2(cos(π4)+isin(π4))Trig form

Second step apply De Moivre's Theorem

z^8=(sqrt(2)(cos(pi/4)+isin(pi/4)))^8z8=(2(cos(π4)+isin(π4)))8

=sqrt(2)^8(cos(8pi/4)+isin(8pi/4))=28(cos(8π4)+isin(8π4))

=16(cos(2pi)+isin(2pi)=16(cos(2π)+isin(2π)

=16(cos(2pi)+isin(2pi)=16(cos(2π)+isin(2π)

=16=16