How do you use De Moivre's theorem to express (1 + i)^8?

1 Answer
Mar 3, 2018

z=16

Explanation:

De Moivre's theorem states if color(orange)(z=r(cos(theta)+isin(theta))),

then color(orange)(z^n=r^n(cos(ntheta)+isin(ntheta)))

First step convert from complex form to trig form

a+birarrr(cos(theta)+isin(theta))

By using

r=sqrt(a^2+b^2) and theta=arctan(b/a)

We have the number z=1+i, thus

r=sqrt(1^2+1^2)=sqrt(2)

theta=arctan(1/1)=pi/4

z=sqrt(2)(cos(pi/4)+isin(pi/4))larr"Trig form"

Second step apply De Moivre's Theorem

z^8=(sqrt(2)(cos(pi/4)+isin(pi/4)))^8

=sqrt(2)^8(cos(8pi/4)+isin(8pi/4))

=16(cos(2pi)+isin(2pi)

=16(cos(2pi)+isin(2pi)

=16