How do you use De Moivre's theorem to express (1 + i)^8?
1 Answer
Mar 3, 2018
Explanation:
De Moivre's theorem states if
then
First step convert from complex form to trig form
a+birarrr(cos(theta)+isin(theta))
By using
r=sqrt(a^2+b^2) andtheta=arctan(b/a)
We have the number
r=sqrt(1^2+1^2)=sqrt(2)
theta=arctan(1/1)=pi/4
z=sqrt(2)(cos(pi/4)+isin(pi/4))larr"Trig form"
Second step apply De Moivre's Theorem