How do you use De Moivre's theorem to express (1 + i)^8?
1 Answer
Explanation:
De Moivre's theorem states if
then
First step convert from complex form to trig form
a+birarrr(cos(theta)+isin(theta))a+bi→r(cos(θ)+isin(θ))
By using
r=sqrt(a^2+b^2)r=√a2+b2 andtheta=arctan(b/a)θ=arctan(ba)
We have the number
r=sqrt(1^2+1^2)=sqrt(2)r=√12+12=√2
theta=arctan(1/1)=pi/4θ=arctan(11)=π4
z=sqrt(2)(cos(pi/4)+isin(pi/4))larr"Trig form"z=√2(cos(π4)+isin(π4))←Trig form
Second step apply De Moivre's Theorem