Solve the equation over the interval [0,2pi)?

2cos2x+2cosx=0

2 Answers
Mar 4, 2018

The solutions are x=pi/3,pi,(5pi)/3

Explanation:

Use this identity:

cos2x=2cos^2x-1

Now, here's the actual problem:

2cos2x+2cosx=0

2(color(red)(cos2x))+2cosx=0

2(color(red)(2cos^2x-1))+2cosx=0

color(red)(4cos^2x-2)+2cosx=0

4cos^2x+2cosx-2=0

4(cosx)^2+2cosx-2=0

Substitute u for cosx:

4u^2+2u-2=0

2u^2+u-1=0

(2u-1)(u+1)=0

u=1/2,-1

Put cosx back in for u:

cosx=1/2, qquadcosx=-1

x=pi/3,(5pi)/3, pi

Hope this helped!

Mar 4, 2018

Use cos double angle identity and quadratic factoring
x= pi/3, pi, (5pi)/3

Explanation:

2cos2x+2cosx=0
2(2cos^2x-1)+2cosx=0
4cos^2x-2+2cosx=0
4cos^2x+2cosx-2=0
2(2cos^2x+cosx-1)=0
2(2cos^2x+2cosx-cosx-1)=0
2(2cosx(cosx+1)-1(cosx+1))=0
2(2cosx-1)(cosx+1)=0
cosx =-1
cosx =1/2
x= pi/3, pi, (5pi)/3