Show d/dx (cot x)=-(cosec x)^2.?
2 Answers
Mar 5, 2018
See explanation
Explanation:
We want find the derivative of
#y=cot(x)=cos(x)/sin(x)#
Use the quotient rule, if
then
#f=cos(x)=>f'=-sin(x)# #g=sin(x)=>g'=cos(x)#
Thus
Or
Mar 5, 2018
Explanation:
#"differentiate using the "color(blue)"quotient rule"#
#"given "f(x)=(g(x))/(h(x))" then"#
#f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"#
#f(x)=cotx=cosx/sinx#
#g(x)=cosxrArrg'(x)=-sinx#
#h(x)=sinxrArrh'(x)=cosx#
#rArrd/dx(cotx)#
#=(-sin^2x-cos^2x)/(sin^2x)#
#=(-(sin^2x+cos^2x))/sin^2x#
#=-1/sin^2x=-csc^2x#