# "We want to find:" #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad int \ { x ( x + 2 )}/{ x^3 + 3 x^2 - 4 } \ dx. #
# "Taking a quick second look, multiplying out the numerator," #
# "we see:" #
# \qquad \qquad \qquad int \ { x ( x + 2 )}/{ x^3 + 3 x^2 - 4 } \ dx \ = \ int \ { x^2 + 2 x}/{ x^3 + 3 x^2 - 4 } \ dx. #
# "Observing the derivative of the denominator:" \qquad 3 x^2 + 6 x, #
# "which just happens to be proportional to numerator:" \ \ x^2 + 2 x, #
# "[this situation is a rare accident -- but welcome], we can finish" #
# "directly as:" #
# \qquad \qquad \qquad int \ { x ( x + 2 )}/{ x^3 + 3 x^2 - 4 } \ dx \ = \ int \ { x^2 + 2 x }/{ x^3 + 3 x^2 - 4 } \ dx. #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ \ = \ 1/3 int \ { 3 ( x^2 + 2 x ) }/{ x^3 + 3 x^2 - 4 } \ dx. #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ \ = \ 1/3 int \ { 3 x^2 + 6 x }/{ x^3 + 3 x^2 - 4 } \ dx. #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ \ = \ 1/3 int \ { ( x^3 + 3 x^2 - 4 )' }/{ x^3 + 3 x^2 - 4 } \ dx. #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ \ = \ 1/3 ln | x^3 + 3 x^2 - 4 | + C. #
# "Thus:" #
# \qquad \qquad \qquad int \ { x ( x + 2 )}/{ x^3 + 3 x^2 - 4 } \ dx \ = \ 1/3 ln | x^3 + 3 x^2 - 4 | + C. #