How can this be reduced to the simplest form?
1+tan2x1+cot2x
2 Answers
Mar 6, 2018
See explanation
Explanation:
We want to simplify
1+tan2(x)1+cot2(x)
Use the pythagorean trig identity
sin2(x)+cos2(x)=1
⇒1+cot2(x)=csc2(x)←divided bysin2(x)
⇒1+tan2(x)=sec2(x)←divided bycos2(x)
Thus
1+tan2(x)1+cot2(x)=sec2(x)csc2(x)=sin2(x)cos2(x)=tan2(x)
Mar 6, 2018
Explanation:
using the trigonometric identities
∙x1+tan2x=sec2x
∙x1+cot2x=csc2x
∙xsecx=1cosx and cscx=1sinx
⇒1+tan2x1+cot2x
=sec2xcsc2x
=1cos2x1sin2x
=1cos2x×sin2x
=sin2xcos2x
=tan2x