How can this be reduced to the simplest form?
#(1+tan^2x) / (1+cot^2x)#
2 Answers
Mar 6, 2018
See explanation
Explanation:
We want to simplify
#(1+tan^2(x))/(1+cot^2(x))#
Use the pythagorean trig identity
#sin^2(x)+cos^2(x)=1#
#=>1+cot^2(x)=csc^2(x)color(green)(larr "divided by" sin^2(x))#
#=>1+tan^2(x)=sec^2(x)color(green)(larr "divided by" cos^2(x))#
Thus
#(1+tan^2(x))/(1+cot^2(x))=sec^2(x)/csc^2(x)=sin^2(x)/cos^2(x)=tan^2(x)#
Mar 6, 2018
Explanation:
#"using the "color(blue)"trigonometric identities"#
#•color(white)(x)1+tan^2x=sec^2x#
#•color(white)(x)1+cot^2x=csc^2x#
#•color(white)(x)secx=1/cosx" and "cscx=1/sinx#
#rArr(1+tan^2x)/(1+cot^2x)#
#=sec^2x/csc^2x#
#=(1/cos^2x)/(1/sin^2x)#
#=1/cos^2x xxsin^2x#
#=sin^2x/cos^2x#
#=tan^2x#