How can this be reduced to the simplest form?

1+tan2x1+cot2x

2 Answers
Mar 6, 2018

See explanation

Explanation:

We want to simplify

1+tan2(x)1+cot2(x)

Use the pythagorean trig identity

sin2(x)+cos2(x)=1

1+cot2(x)=csc2(x)divided bysin2(x)

1+tan2(x)=sec2(x)divided bycos2(x)

Thus

1+tan2(x)1+cot2(x)=sec2(x)csc2(x)=sin2(x)cos2(x)=tan2(x)

Mar 6, 2018

tan2x

Explanation:

using the trigonometric identities

x1+tan2x=sec2x

x1+cot2x=csc2x

xsecx=1cosx and cscx=1sinx

1+tan2x1+cot2x

=sec2xcsc2x

=1cos2x1sin2x

=1cos2x×sin2x

=sin2xcos2x

=tan2x