How do you verify sinx/(1-cosx) + (1-cosx)/sinx = 2cscxsinx1cosx+1cosxsinx=2cscx?

1 Answer
Mar 6, 2018

See Below

Explanation:

LHS: sin x/(1-cos x) +(1-cosx)/sin xLHS:sinx1cosx+1cosxsinx

=(sinx*sinx+(1-cosx)(1-cosx))/(sinx(1-cos x))=sinxsinx+(1cosx)(1cosx)sinx(1cosx)->common denominator

=(sin^2 x+1-2cosx+cos^2x)/(sinx(1-cosx)=sin2x+12cosx+cos2xsinx(1cosx)

=(sin^2 x+cos^2x+1-2cosx)/(sinx(1-cosx))=sin2x+cos2x+12cosxsinx(1cosx)

=(1+1-2cosx)/(sinx(1-cosx))=1+12cosxsinx(1cosx)

=(2-2cosx)/(sinx(1-cosx))=22cosxsinx(1cosx)

=(2(1-cosx))/(sinx(1-cosx))=2(1cosx)sinx(1cosx)

=(2(cancel(1-cosx)))/(sinx cancel((1-cosx)))

=2/sinx

=2*1/sinx

=2 csc x

=RHS