LHS: sin x/(1-cos x) +(1-cosx)/sin xLHS:sinx1−cosx+1−cosxsinx
=(sinx*sinx+(1-cosx)(1-cosx))/(sinx(1-cos x))=sinx⋅sinx+(1−cosx)(1−cosx)sinx(1−cosx)->common denominator
=(sin^2 x+1-2cosx+cos^2x)/(sinx(1-cosx)=sin2x+1−2cosx+cos2xsinx(1−cosx)
=(sin^2 x+cos^2x+1-2cosx)/(sinx(1-cosx))=sin2x+cos2x+1−2cosxsinx(1−cosx)
=(1+1-2cosx)/(sinx(1-cosx))=1+1−2cosxsinx(1−cosx)
=(2-2cosx)/(sinx(1-cosx))=2−2cosxsinx(1−cosx)
=(2(1-cosx))/(sinx(1-cosx))=2(1−cosx)sinx(1−cosx)
=(2(cancel(1-cosx)))/(sinx cancel((1-cosx)))
=2/sinx
=2*1/sinx
=2 csc x
=RHS