Find the area of triangle abc if a=11, b=9, c=5?

2 Answers
Mar 7, 2018

22.19

Explanation:

We know that area of triangleABC=triangle=color(red)(sqrt(s(s-a)(s-b)(s-c))
where,2s=a+b+c.
Taking, a=11,b=9,c=5,we have,2s=11+9+5=25rArrs=12.5
triangle=sqrt(12.5(12.5-11)(12.5-9)(12.5-5))
=sqrt((12.5)(1.5)(3.5)(7.5))~~22.19

Mar 7, 2018

22.16 " cm"^2

Explanation:

Use the Heron's formula to find the area of the triangle.

According to Heron's formula ,

Area of triangle = sqrt[S(S-a)(S-b)(S-c)]

Here , S = "Semiperimeter of" triangleabc

=> (a+b+c)/2

=> (11+9+5)/2

=> 25/2 "cm"

And a=11" cm"

b=9" cm"

c=5" cm"

Put these values in the herons formula.

=> sqrt[25/2(25/2-11)(25/2-9)(25/2-5)]

=> sqrt[25/2xx3/2xx7/2xx15/2

=> sqrt(5/2xx5/2xx3/2xx3/2xx5xx7

=> 5/2xx3/2xxsqrt(5xx7

=> 15/4xxsqrt35

=> 3.75sqrt35

=> 3.75xx5.91

=> 22.1625" cm"^2

=> 22.16 " cm"^2 "approximately"