How do you solve sin(x)+cos(x)=-1?

3 Answers

x=2npi+pi or x=2npi-pi/2

Explanation:

Given: sinx+cosx=-1

Square both sides

(sinx+cosx)^2=(-1)^2

sin^2x+cos^2x+2sinxcosx=1

1+2sinxcosx=1

2sinxcosx=0

Either sinx=0" or "cosx=0

If sinx=0
cosx=-1

and x=2npi+pi

If cosx=0
sinx=-1

and x=2npi-pi/2

Mar 8, 2018

x= pi+2pin, n∈Z
x= (3pi)/2+2pin, n∈Z

Explanation:

  1. Square both sides
    (sin(x)+cos(x))^2=(-1)^2
    sin(x)^2+cos^2x+2sinxcosx=1
    1+2sinxcosx=1
    2sinxcosx=0
    2sinx(cosx)=0
    sinx=0
    cosx=0
    x= pi+2pin, n∈Z
    x= (3pi)/2+2pin, n∈Z
    x=pi/2+2pin, n∈Z EXTRANEOUS
    x=0+2pin, n∈Z EXTRANEOUS
Mar 8, 2018

x = 3/2 pi + 2pin " or " pi + 2pin

Explanation:

sin(x)+cos(x)=-1

=>sin(x)=-1-cos(x) equation-1

We have an identity

sin^2(x)+cos^2(x)=1

Use this to find the value of sin(x)

=> sin^2(x)=1-cos^2(x)

=> sin(x)=+-sqrt(1-cos^2(x))

We got two values for sin(x)

+sqrt(1-cos^2(x)) "and" -sqrt(1-cos^2(x))

Put them one by one in equation-1.

=> +sqrt(1-cos^2(x))=-1-cos(x)

Squaring both sides

=> 1-cos^2(x)=1+cos^2(x)+2cos(x)

=> 0=2cos^2(x)+2cos(x)

Divide by two both sides

=> 0=cos^2(x)+cos(x)

=> 0=cos(x)(cos(x)+1)

It gives cos(x)=0

We get sin(x)=-1

The solution for this is

x = 3/2 pi + 2pin

Here , pi = 180^@ and n is any integer.

Now , we also get cos(x)+1=0

=> cos(x)=-1

It gives sin(x)=0 according to the given equation.

The solution for this is

x= pi + 2pin

If you put sin(x)=-sqrt(1-cos^2(x)) you get the same results.

Hope it helps :)