FIND #int_. (x^2)ln 5x dx# using IBP (Integration by parts) ?
1 Answer
Mar 8, 2018
Explanation:
We want to integrate
#I=intx^2ln(5x)dx#
#intudv=uv-intvdu#
Let
Then
Thus
#I=ln(5x)1/3x^3-int1/3x^3*1/xdx#
#color(white)(I)=1/3ln(5x)x^3-1/3intx^2dx#
#color(white)(I)=1/3ln(5x)x^3-1/9x^3+C#
#color(white)(I)=1/9x^3(3ln(5x)-1)+C#