What is the derivative of the function ? y = x √ 2x + 3

2 Answers

done it for you

Explanation:

Here I have used the uv rule for differentiationKevin's MAth

Mar 8, 2018

solution of y=xsqrt(2x+3)y=x2x+3 instead of y=xsqrt(2)x+3y=x2x+3
(dy)/(dx)=(3(x+1))/sqrt(2x+3)dydx=3(x+1)2x+3
HINT:
color(red)((1)y=u*v=>(dy)/(dx)=u*(dv)/(dx)+v*(du)/(dx)(1)y=uvdydx=udvdx+vdudx

Explanation:

y=x*sqrt(2x+3)=x*(2x+3)^(1/2)y=x2x+3=x(2x+3)12=>(dy)/(dx)=x*d/(dx)((2x+3)^(1/2))+(2x+3)^(1/2)*d/(dx)(x)dydx=xddx((2x+3)12)+(2x+3)12ddx(x)
=x*1/cancel(2)*(2x+3)^(1/2-1)*cancel(2)+(2x+3)^(1/2)
=x(2x+3)^(-1/2)+(2x+3)^(1/2
=x/sqrt(2x+3)+sqrt(2x+3)
=(x+2x+3)/(sqrt(2x+3))=(3x+3)/sqrt(2x+3)=(3(x+1))/sqrt(2x+3)
We can multiply x with sqrt(2x+3)
y=x(2x+3)^(1/2)=(x^2)^(1/2)(2x+3)^(1/2)=[x^2(2x+3)]^(1/2)=>y=(2x^3+3x^2)^(1/2)=>y^'=1/2(2x^3+3x^2)^(1-1/2)(6x^2+6x)
y^'=(6x)/2(2x^3+3x^2)^(-1/2)(x+1)=(3x(x+1))/sqrt(2x^3+3x^2)=(3x(x+1))/(sqrt(x^2(2x+3)))=(3x(x+1))/(xsqrt((2x+3)))=(3(x+1))/sqrt(2x+3)
Note:: tox*sqrt(2x+3)!=x+sqrt(2x+3)