Find the derivative of the function?
#y=ln tan^2 3x#
1 Answer
Mar 8, 2018
Explanation:
We to find the derivative of
#y=ln(tan^2(3x))=2ln(tan(3x))#
Use the chain rule, if
#dy/dx=dy/(du)(du)/dx#
Let
and
Thus
#dy/dx=6/usec^2(3x)=6/tan(3x)sec^2(3x)=6csc(3x)sec(3x)#
Or by applying the identity
#dy/dx=12csc(6x)#