Find the derivative of the function?
y=ln tan^2 3xy=lntan23x
1 Answer
Mar 8, 2018
Explanation:
We to find the derivative of
y=ln(tan^2(3x))=2ln(tan(3x))y=ln(tan2(3x))=2ln(tan(3x))
Use the chain rule, if
dy/dx=dy/(du)(du)/dxdydx=dydududx
Let
and
Thus
dy/dx=6/usec^2(3x)=6/tan(3x)sec^2(3x)=6csc(3x)sec(3x)dydx=6usec2(3x)=6tan(3x)sec2(3x)=6csc(3x)sec(3x)
Or by applying the identity
dy/dx=12csc(6x)dydx=12csc(6x)