#I=int_0^(π/2)e^xsinxdx#
We will use integration by parts
#int_0^(π/2)e^xsinxdx=int_0^(π/2)(e^x)'sinxdx# #=#
#[e^xsinx]_0^(π/2) - int_0^(π/2)e^x(sinx)'dx#
#[e^xsinx]_0^(π/2) - int_0^(π/2)e^xcosxdx#
#[e^xsinx]_0^(π/2) - int_0^(π/2)(e^x)'cosxdx#
#[e^xsinx]_0^(π/2) - [e^xcosx]_0^(π/2)+int_0^(π/2)e^x(-sinx)dx#
#[e^xsinx]_0^(π/2) - [e^xcosx]_0^(π/2)-int_0^(π/2)e^xsinxdx#
If #int_0^(π/2)e^xsinxdx=J#
then
#I+J=2int_0^(π/2)e^xsinxdx#
#2int_0^(π/2)e^xsinxdx=[e^xsinx]_0^(π/2) - [e^xcosx]_0^(π/2)#
#int_0^(π/2)e^xsinxdx=([e^xsinx]_0^(π/2) - [e^xcosx]_0^(π/2))/2#
#int_0^(π/2)e^xsinxdx=(e^(π/2)sin(π/2)-e^0sin0 - e^(π/2)cos(π/2)+e^0cos0)/2#
#int_0^(π/2)e^xsinxdx=(e^(π/2)+1)/2#