Expand sin^6 x?

1 Answer
Mar 9, 2018

sin^6(x)=-1/32(cos(6x)-6cos(4x)+15cos(2x)-10)

Explanation:

We want to expand

sin^6(x)

One way is to use these identities repeatedly

  • sin^2(x)=1/2(1-cos(2x))
  • cos^2(x)=1/2(1+cos(2x))

This often gets quite long, which sometimes leads to mistake

Another way is to use the complex numbers (and Euler's formula)

We can express sine and cosine as

color(red)(sin(x)=(e^(ix)-e^(-ix))/(2i)) and color(red)(cos(x)=(e^(ix)+e^(-ix))/2)

Thus

sin^6(x)=((e^(ix)-e^(-ix))/(2i))^6

=(e^(ix)-e^(-ix))^6/(-64)

=(e^(6ix)-6e^(4ix)+15e^(2ix)-20+15e^(-2ix)-6e^(-4ix)+e^(-6ix))/(-64)

=-1/32(e^(6ix)+e^(-6ix)-6e^(4ix)-6e^(-4ix)+15e^(2ix)+15e^(-2ix)-20)/2

=-1/32(cos(6x)-6cos(4x)+15cos(2x)-10)

The third way is using De Moivre's theorem, we can express

color(blue)(2cos(nx)=z^n+1/z^n) and color(blue)(2isin(nx)=z^n-1/z^n

where z^n=(cos(x)+isin(x))^n=cos(nx)+isin(nx)

Thus

(2isin(x))^6=(z-1/z)^6

=>sin^6(x)=-1/64(z-1/z)^6

Expand the binomial on the right hand side

BIN=(z^6+1/z^6-6z^4-6/z^4+15z^2+15/z^2-20)

color(white)(RHS)=(z^6+1/z^6-6*(z^4+1/z^4)+15*(z+1/z)+20)

color(white)(RHS)=(2cos(6x)-12cos(4x)+30cos(2x)-20)

Thus

sin^6(x)=-1/64(2cos(6x)-12cos(4x)+30cos(2x)-20)

sin^6(x)=-1/32(cos(6x)-6cos(4x)+15cos(2x)-10)