Expand sin^6 xsin6x?
1 Answer
Explanation:
We want to expand
sin^6(x)sin6(x)
One way is to use these identities repeatedly
sin^2(x)=1/2(1-cos(2x))sin2(x)=12(1−cos(2x)) cos^2(x)=1/2(1+cos(2x))cos2(x)=12(1+cos(2x))
This often gets quite long, which sometimes leads to mistake
Another way is to use the complex numbers (and Euler's formula)
We can express sine and cosine as
color(red)(sin(x)=(e^(ix)-e^(-ix))/(2i))sin(x)=eix−e−ix2i andcolor(red)(cos(x)=(e^(ix)+e^(-ix))/2)cos(x)=eix+e−ix2
Thus
The third way is using De Moivre's theorem, we can express
color(blue)(2cos(nx)=z^n+1/z^n)2cos(nx)=zn+1zn andcolor(blue)(2isin(nx)=z^n-1/z^n2isin(nx)=zn−1zn
where
Thus
(2isin(x))^6=(z-1/z)^6(2isin(x))6=(z−1z)6
=>sin^6(x)=-1/64(z-1/z)^6⇒sin6(x)=−164(z−1z)6
Expand the binomial on the right hand side
Thus
sin^6(x)=-1/64(2cos(6x)-12cos(4x)+30cos(2x)-20)sin6(x)=−164(2cos(6x)−12cos(4x)+30cos(2x)−20)
sin^6(x)=-1/32(cos(6x)-6cos(4x)+15cos(2x)-10)sin6(x)=−132(cos(6x)−6cos(4x)+15cos(2x)−10)