Expand #sin^6 x#?
1 Answer
Explanation:
We want to expand
#sin^6(x)#
One way is to use these identities repeatedly
#sin^2(x)=1/2(1-cos(2x))# #cos^2(x)=1/2(1+cos(2x))#
This often gets quite long, which sometimes leads to mistake
Another way is to use the complex numbers (and Euler's formula)
We can express sine and cosine as
#color(red)(sin(x)=(e^(ix)-e^(-ix))/(2i))# and#color(red)(cos(x)=(e^(ix)+e^(-ix))/2)#
Thus
The third way is using De Moivre's theorem, we can express
#color(blue)(2cos(nx)=z^n+1/z^n)# and#color(blue)(2isin(nx)=z^n-1/z^n#
where
Thus
#(2isin(x))^6=(z-1/z)^6#
#=>sin^6(x)=-1/64(z-1/z)^6#
Expand the binomial on the right hand side
Thus
#sin^6(x)=-1/64(2cos(6x)-12cos(4x)+30cos(2x)-20)#
#sin^6(x)=-1/32(cos(6x)-6cos(4x)+15cos(2x)-10)#