#LHS : (2tan(x/2))/(1+tan^2(x/2))#
#=((2sin(x/2))/cos(x/2))/sec^2(x/2)#-> use the property #1+tan^2x=sec^2x#
#=((2sin(x/2))/cos(x/2))/(1/cos ^2(x/2))#
#=(2sin(x/2))/cos(x/2) * cos ^2(x/2)/1#
#=(2sin(x/2))/cancelcos(x/2) * cos ^cancel2(x/2)/1#
#=2sin(x/2)cos(x/2)#
#=sin2(x/2)#->use the property #sin2x=2sinxcosx#
#=sincancel2(x/cancel2)#
#=sinx#
#=RHS#