How do i solve this question?
∫(cos2xsinx+sinx+1)dx
1 Answer
Mar 10, 2018
Explanation:
We want to solve
I=∫cos2(x)sin(x)+sin(x)+1dx
Rewrite the integrand
I=∫1−sin2(x)sin(x)+sin(x)+1dx
I=∫csc(x)−sin(x)+sin(x)+1dx
I=∫csc(x)+1dx
I=∫csc(x)+∫1dx
We know the integral of cosecant as (otherwise look here )
I1=∫csc(x)dx=−ln(|csc(x)+cot(x)|)+C
Thus
I=−ln(|csc(x)+cot(x)|)+x+C