How do you solve 12x ^ { 2} - 2x + 2= 4?

1 Answer
Mar 10, 2018

x_1 = 1/2

x_2 = -1/3

Explanation:

12x^2 - 2x + 2 -4 = 0

12x^2 - 2x - 2 = 0

"Quadratic discriminant formula ": D = b^2 - 4ac

D = (-2)^2 - 4*12*(-2) = 4 + 96 = 100

D > 0 implies 2 solutions exist.

x_1 = (-b + sqrt(100))/(2a) = (2 + 10)/24 = 12/24 = 1/2

x_2 = (-b - sqrt(100))/(2a) = (2 -10)/ 24 = -8/24 = - 1/3

Hence 2 roots as quaranteed by the formula :)