Derivative of #e^x-e^-x#?

3 Answers
Mar 10, 2018

#e^x+e^-x#

Explanation:

#color(red)(d/(dx)(e^x)=e^x#
#y=e^x-e^-x=>(dy)/(dx)=e^x-e^-x*d/(dx)(-x)##=e^x-e^-x(-1)=e^x+e^-x#

Mar 10, 2018

#e^x+e^(-x)#

Explanation:

#"differentiate "e^(-x)" using the "color(blue)"chain rule"#

#"Given "y=f(g(x))" then"#

#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#

#rArrd/dx(e^(-x))=e^(-x)xxd/dx(-x)=-e^(-x)#

#rArrd/dx(e^x-e^(-x))#

#=e^x-(-e^(-x))=e^x+e^(-x)#

Mar 10, 2018

#=e^x+e^-x#

Explanation:

#d/dx(e^x-e^-x)#
#=d/dx(2sinh x)# (definition of sinh x)
#=2cosh x# (Because #d/dx sinhx = cosh x# and vice versa)
#=e^x+e^-x# (definition of cosh x)