Derivative of #e^x-e^-x#?
3 Answers
Mar 10, 2018
Explanation:
Mar 10, 2018
Explanation:
#"differentiate "e^(-x)" using the "color(blue)"chain rule"#
#"Given "y=f(g(x))" then"#
#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#
#rArrd/dx(e^(-x))=e^(-x)xxd/dx(-x)=-e^(-x)#
#rArrd/dx(e^x-e^(-x))#
#=e^x-(-e^(-x))=e^x+e^(-x)#
Mar 10, 2018
Explanation: