How can I simplify this trigonometry expression? Thanks!

enter image source here

2 Answers
Mar 11, 2018

See below

Explanation:

Whenever I see two fractions being added or subtracted with different denominators, I automatically think we need a common denominator.

1/(1+sintheta)+1/(1-sintheta)=
(1(1-sintheta))/((1+sintheta)(1-sintheta))+(1(1+sintheta))/((1-sintheta)(1+sintheta))=
2/(1-sin^2theta)
Now that we successfully added the two fractions, we will apply a Pythagorean identity to simplify:
sin^2theta+cos^2theta=1
Therefore:
cos^2theta=1-sin^2theta
Let's substitute cos^2theta in our denominator:
2/(cos^2theta)
Now apply the reciprocal identity:
Sectheta=1/costheta
Final answer: 2sec^2theta

Mar 11, 2018

2 sec^2 theta

Explanation:

1/(1 + sin theta) + 1/(1 - sin theta)

multiplying each term by one in the form of a ratio of an appropriately chosen numerator and denominator:

= (1 - sin theta)/((1 + sin theta)(1 - sin theta)) + (1 + sin theta)/((1 - sin theta)(1 + sin theta))

using the corollary of the difference of two squares for the terms in the denominators:

= (1 - sin theta)/(1 - sin^2theta) + (1 + sin theta)/(1 - sin^2theta)

summing terms with the same denominator

(1 - sin theta + 1 + sin theta)/(1 - sin^2theta)

using a rearrangement of the identity cos^2 theta + sin^2 theta = 1:

= 2 / cos^2theta

noting sec^2 theta = 1/(cos^2 theta):

= 2 sec^2 theta