How to solve it ?
2 Answers
#I=1/2(x+ln(cos(x)+sin(x)))+C#
Explanation:
We want to solve
#I=intcos(x)/(cos(x)+sin(x))dx#
We can quite easily find
#color(green)(I_1=int(cos(x)+sin(x))/(cos(x)+sin(x))dx# and#color(green)(I_2=int(cos(x)-sin(x))/(cos(x)+sin(x))dx)#
So can we find some constants such
#I=AI_1+BI_2#
Only the denominator have changed, thus we seek
#cos(x)=A(cos(x)+sin(x))+B(cos(x)-sin(x))#
By letting
#1=A+B#
#color(white)(0=A-Bsscdcfcss)=>A=B=1/2#
#0=A-B#
Therefore
#I=1/2int(cos(x)+sin(x))/(cos(x)+sin(x))dx+1/2int(cos(x)-sin(x))/(cos(x)+sin(x))dx#
#color(white)(I)=1/2intdx+1/2int(1)/(u)du#
#color(white)(I)=1/2x+1/2ln(u)+C#
#color(white)(I)=1/2(x+ln(cos(x)+sin(x)))+C#
The other can be solve by similar approach
and
Explanation:
Also,
Soving