What is the integral of (1+x)3^x?

1 Answer
Mar 11, 2018

#I=(3^x(ln(3)x-1+ln(3)))/(ln(3))^2+C#

Explanation:

We want to solve

#I=int(1+x)3^xdx#

Rewrite the integrand using #a^x=e^(ln(a)x)#

#I=inte^(ln(3)x)dx+intxe^(ln(3)x)dx#

Use integration by parts for the second integral

#intudv=uv-intvdu#

Let #u=x=>du=dx#

And #dv=e^(ln(3)x)dx=>v=1/ln(3)e^(ln(3)x)#

#I=inte^(ln(3)x)dx+1/ln(3)xe^(ln(3)x)-1/ln(3)inte^(ln(3)x)dx#

#color(white)(I)=1/ln(3)xe^(ln(3)x)+(1-1/ln(3))inte^(ln(3)x)dx#

#color(white)(I)=1/ln(3)xe^(ln(3)x)+(1-1/ln(3))1/ln(3)e^(ln(3)x)+C#

#color(white)(I)=(3^x(ln(3)x-1+ln(3)))/(ln(3))^2+C#