integrate the following: #inte^x[tanx+sec^2x]# ?

2 Answers
Mar 11, 2018

#I=e^xtan(x)+C#

Explanation:

We want to solve

#I=inte^x(tan(x)+sec^2(x))dx#

Split into two integrals

#I=inte^xtan(x)dx+inte^xsec^2(x)dx#

Use integration by parts (first integral)

#intudv=uv-intvdu#

Let #u=tan(x)=>du=sec^2(x)dx#

And #dv=e^xdx=>v=e^x#

#I=e^xtan(x)-inte^xsec^2(x)dx+inte^xsec^2(x)dx#

A fortunate cancellation

#I=e^xtan(x)+C#

Mar 11, 2018

#e^x*tanx+c#

Explanation:

#I=inte^x[tanx+sec^2x]dx#
#color(red)(I=inte^x[f(x)+f^'(x)]dx=e^xf(x)+c#
Here, #f(x)=tanx=>f^'(x)=sec^2x#
So, #I=inte^x[tanx+sec^2x]dx=e^x*tanx+c#